Atmospheric fates of Criegee intermediates in the ozonolysis of isoprene.

نویسندگان

  • Tran B Nguyen
  • Geoffrey S Tyndall
  • John D Crounse
  • Alexander P Teng
  • Kelvin H Bates
  • Rebecca H Schwantes
  • Matthew M Coggon
  • Li Zhang
  • Philip Feiner
  • David O Milller
  • Kate M Skog
  • Jean C Rivera-Rios
  • Matthew Dorris
  • Kevin F Olson
  • Abigail Koss
  • Robert J Wild
  • Steven S Brown
  • Allen H Goldstein
  • Joost A de Gouw
  • William H Brune
  • Frank N Keutsch
  • John H Seinfeld
  • Paul O Wennberg
چکیده

We use a large laboratory, modeling, and field dataset to investigate the isoprene + O3 reaction, with the goal of better understanding the fates of the C1 and C4 Criegee intermediates in the atmosphere. Although ozonolysis can produce several distinct Criegee intermediates, the C1 stabilized Criegee (CH2OO, 61 ± 9%) is the only one observed to react bimolecularly. We suggest that the C4 Criegees have a low stabilization fraction and propose pathways for their decomposition. Both prompt and non-prompt reactions are important in the production of OH (28% ± 5%) and formaldehyde (81% ± 16%). The yields of unimolecular products (OH, formaldehyde, methacrolein (42 ± 6%) and methyl vinyl ketone (18 ± 6%)) are fairly insensitive to water, i.e., changes in yields in response to water vapor (≤4% absolute) are within the error of the analysis. We propose a comprehensive reaction mechanism that can be incorporated into atmospheric models, which reproduces laboratory data over a wide range of relative humidities. The mechanism proposes that CH2OO + H2O (k(H2O)∼ 1 × 10(-15) cm(3) molec(-1) s(-1)) yields 73% hydroxymethyl hydroperoxide (HMHP), 6% formaldehyde + H2O2, and 21% formic acid + H2O; and CH2OO + (H2O)2 (k(H2O)2∼ 1 × 10(-12) cm(3) molec(-1) s(-1)) yields 40% HMHP, 6% formaldehyde + H2O2, and 54% formic acid + H2O. Competitive rate determinations (kSO2/k(H2O)n=1,2∼ 2.2 (±0.3) × 10(4)) and field observations suggest that water vapor is a sink for greater than 98% of CH2OO in a Southeastern US forest, even during pollution episodes ([SO2] ∼ 10 ppb). The importance of the CH2OO + (H2O)n reaction is demonstrated by high HMHP mixing ratios observed over the forest canopy. We find that CH2OO does not substantially affect the lifetime of SO2 or HCOOH in the Southeast US, e.g., CH2OO + SO2 reaction is a minor contribution (<6%) to sulfate formation. Extrapolating, these results imply that sulfate production by stabilized Criegees is likely unimportant in regions dominated by the reactivity of ozone with isoprene. In contrast, hydroperoxide, organic acid, and formaldehyde formation from isoprene ozonolysis in those areas may be significant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of the water dimer on the atmospheric reactivity of carbonyl oxides.

The reactions of twelve carbonyl oxides or Criegee intermediates with the water monomer and with the water dimer have been investigated employing high level theoretical methods. The study includes all possible carbonyl oxides arising from the isoprene ozonolysis and the methyl and dimethyl carbonyl oxides that originated from the reaction of ozone with several hydrocarbons. These reactions have...

متن کامل

The UV absorption spectrum of the simplest Criegee intermediate CH 2

Ozonolysis is a major removal mechanism in the troposphere for unsaturated hydrocarbons which are emitted in large quantities from both natural and human sources. Now it is generally accepted that ozonolysis of alkenes proceeds via Criegee intermediates, highly reactive species postulated in 1949 by Rudolf Criegee. In the troposphere, Criegee intermediates are involved in several important atmo...

متن کامل

Reaction of Stabilized Criegee Intermediates from Ozonolysis of Limonene with Water: Ab Initio and DFT Study

The mechanism of the chemical reaction of H2O with three stabilized Criegee intermediates (stabCI-OO, stabCI-CH3-OO and stabCIx-OO) produced via the limonene ozonolysis reaction has been investigated using ab initio and DFT (Density Functional Theory) methods. It has been shown that the formation of the hydrogen-bonded complexes is followed by two different reaction pathways, leading to the for...

متن کامل

Mechanisms for the formation of organic acids in the gas-phase ozonolysis of 3-carene.

This paper describes experimental studies aimed at elucidating mechanisms for the formation of low-volatility organic acids in the gas-phase ozonolysis of 3-carene. Experiments were carried out in a static chamber under 'OH-free' conditions. A range of multifunctional acids-which are analogous to those observed from alpha-pinene ozonolysis-were identified in the condensed phase using gas chroma...

متن کامل

Selective deuteration illuminates the importance of tunneling in the unimolecular decay of Criegee intermediates to hydroxyl radical products.

Ozonolysis of alkenes, an important nonphotolytic source of hydroxyl (OH) radicals in the atmosphere, proceeds through unimolecular decay of Criegee intermediates. Here, we report a large kinetic isotope effect associated with the rate-limiting hydrogen-transfer step that releases OH radicals for a prototypical Criegee intermediate, CH3CHOO. IR excitation of selectively deuterated syn-CD3CHOO i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 18 15  شماره 

صفحات  -

تاریخ انتشار 2016